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Abstract— In the supersonic regime, total drag rises colossally at higher speeds due to shockwaves. Drag reduction is 

imperative for modern fighter aircraft to efficiently sustain higher Mach during flight. Hence, various techniques are 

integrated into the preliminary design phase enabling these modern fighter aircraft to super-cruise. Area ruling leads to 

better high-speed aerodynamic performance. Utilizing the Sears-Haack cross-sectional area ruling techniques is one of the 

drag-minimization processes. Various Haack series are explored in this study for a wing-body configuration to analyse the 

methodology that can be applied for the design of a modern multi-role fighter aircraft ensuring the required aircraft 

volume is conserved. Application of Von Kármán integral equation leads to better optimization of fuselage shape and 

hence impart a significant effect on supersonic drag. Employing this phenomenon, in the following research, decreased 

wave drag by 45% at Mach 1.0. Other Haack series can provide better results but the implementation is limited by the 

area of application. Therefore, the selection of methodology applied for the enhancement of supercruise capability is the 

key finding of this study.  
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I. INTRODUCTION  

Wave drag and aerodynamic efficiency are the measures of 

the performance of aircraft. Especially in the case of modern 

fighter aircraft where high speed is an essential characteristic 

of the performance profile. The measure of aerodynamics can 

be estimated through the maximum lift to drag ratio or fuel 

consumption.  

Drag produced by the aircraft during its flight determines 

the aerodynamic efficiency of the aircraft. Greater the speed 

requirement, the greater the drag penalty. Whereat higher 

speeds, the drag shoots up because of wave drag contribution 

to the total drag. Therefore, this increase in drag at higher 

speeds experienced by the aircraft deteriorates the operational 

effectiveness of the aircraft. The theory of wave drag extends 

to the phenomenon of energy transfer from the supersonic 

aircraft to the surrounding air as strong shock waves. The 

formation of shockwaves is uniquely associated with the 

high-speed aerodynamics as the pressure drag increases and 

dominates the transonic and supersonic flight regimes. Due to 

this particular aerodynamics constraint and the urge to make 

modern fighters as competent as possible in terms of 

maximum speed, different theories and experiments have 

been carried out for the reduction of wave drag. Wave drag is 

highly dependent on the geometry of the aircraft and flight 

conditions. Geometrical parameters with maximum impact 

are the volume and the cross-sectional area distribution of the 

aircraft. To solve the consequence of geometry and its effect 

on the aerodynamics, supersonic area rule is used in the 

conceptual design and optimization of high-speed aircraft.  

 
Figure 1 - Wave drag relative to the location of the maximum 

cross-sectional area for selected STOVL and conventional 

fighters [1] 

 
 

Figure 2 - Wave drag relative to fineness ratio for selected 

STOVL and conventional fighters [1] 
Wave drag variation with the location of the maximum 

cross-sectional area is studied, as shown in Figure 1[1] 

implying that the lowest wave drag is obtained when the 

maximum area is located at 50-60% along fuselage length 
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from the nose. According to various research works, the 

fineness ratio contributes significantly to wave drag. For a 

sears Haack body, wave drag decreases when the fineness 

ratio is increased as shown in Figure 2. The relationship 

between aircraft geometry and wave drag is far more 

complex. For the past seven decades, interest is shown in the 

methodology of reducing wave drag due to the quest to 

manufacture aircraft with high supersonic speed capabilities. 

Today, the requirement of a supersonic dash is converted into 

super-cruise. One of the factors contributing to this capability 

of next-generation fighter aircraft is slender bodies with 

reduced drag. Raptor, Gripen, or Rafale, all latest aircraft are 

designed upon the very methodology of area ruling. 

A. Harris Wave Drag Code 

A linearized aerodynamic code is used to estimate the 
supersonic wave drag component of the total drag which itself 
is based on the area rule method. This phenomenon is based 
on the fact that the measure of wave drag is dependent upon 
the shape of the fuselage, which means that the change in the 
area encountered by flow in the longitudinal direction 
determines how much wave drag does the body produces 
when travelling at a supersonic speed.  

 Hence, refined volume distribution of the body 
longitudinally is required for the reduction of wave drag 
which can be attained by correct placement and arrangement 
of volumetric components. Von Karman slender body 
formula is applied to the equivalent bodies for the estimation 
of wave drag. The calculation is an accumulated integral of 
all the sections. 

B. Supersonic Area Ruling 

 The supersonic area rule works by passing a series of 
cutting planes along the longitudinal axis of the aircraft as 
shown in Figure 3. The cutting planes are inclined at the 
Mach angle µ with respect to the x-axis of the aircraft. This 
set of cutting planes can be orientated at different angles of 
rotation (θ) about the aircraft roll axis to approximate the 
Mach cone. The equivalent body area at each station is 
projected on a plane normal to the axis of the area intercepted 
by the cutting plane. Groups of equivalent bodies for different 
values of θ must be considered to determine drag accurately. 
Therefore, at each Mach number, a series of equivalent bodies 
of revolution is generated. The Von Karman slender body 
formula gives drag as a function of the equivalent body area 
distribution and free stream conditions. For a given Mach 
number, the wave drag is taken to be the integrated average of 
the equivalent body wave drags [2]  

 

Figure 3 - Projected areas of Mach angle cutting planes 

intersecting a body [2] 

II. HAACK BODIES 

The integral equation developed by Von Karman is used 
for the wave drag calculation of slender bodies of revolution 

at various Mach numbers. Haack and other theorists have also 
used this equation to design various shapes of minimum drag 
bodies. For any specific set of variables such as length and 
diameter, length and volume, or diameter and volume, there 
are specific shapes for minimum drag at some specific Mach 
numbers for each case. Each is referred to as L-D, L-V, and 
D-V respectively.   

Mathematically, the equations given below describe the 
revolved profiles.  

𝜃 = arccos (1 −
2𝑥

𝐿
) 

(1) 

𝑦 = 𝑅(𝑥) =
𝑅

√𝜋
√𝜃 −

sin(2𝜃)

2
+ 𝐶 sin3(𝜃) 

(2) 

Where; 

L is the overall length of the body 

R is the thickness/radius of the body 

y is the radius of the body at a particular x location as it varies 

from one end to the other 
 The series is a continuous set of shapes determined by the 
value of C in the equation. C=0 denotes the LD-Haack (Von 
Karman) which is used in the Harris wave drag code. LD 
signifies a minimum drag for a minimum length and 
diameter. While C=1/3 signifies LV-Haack that indicates 
minimum wave drag for a given length and volume [4]. The 
values are given as:  

Table 1 - Constant Values 

 C Cp 

L-V 0.333 0.59 

L-D 0 0.519 

D-V -0.666 0.392 

 Maximum cross-sectional area aids the calculation of 
maximum radius circular cross-sections. The formula for 
maximum area is given as: 

𝐴𝑚𝑎𝑥 =
𝑉

𝐶𝑝. 𝐿
 

(3) 

 Following the three Haack Series, different wing-body 
configurations were formed using the aforementioned 
equations. All three configurations are shown with the 
respective cross-sectional area distributions. Figure 4, Figure 
5, and Figure 6 show the configurations formed by employing 
L-D, L-V, and D-V Haack Series formulations respectively. 
Wave drag analysis has also been carried out on all three 
configurations and the results are shown in Figure 7, which 
shows the variation of drag with Mach number. DV Haack 
optimised geometry has drag significantly lesser than the 
other two configurations.  

Experiments have been carried out to compare the wave drag 
values of bodies of revolution with optimised shapes derived 
from the equation above. It is also concluded that with the 
greater bluntness of the shape of the body, the drag 
coefficient would increase with increasing Mach number 
whereas if the bluntness is not significant then the drag 
coefficient decreases with increasing Mach number over a 
greater part of the range. Hence, there is no particular shape 
for the complete Mach range. The study in [3] concludes that 
if the fineness ratio is constant then blunting is increased that 
results in a decrease in drag and if the blunting is kept 
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constant then the fineness ratio is reduced to reduce the drag. 
A fuselage with a wing of a typical modern fighter aircraft 
was modelled with the volume of a typical fighter enclosed 
by the body-wing configuration. For all three series, L-D, L-
V, and D-V, certain geometrical parameters were held 
constant and area ruling was carried out based on the 
difference in the equation resulting in the shape of the 
respective optimised bodies. 

 

 

Figure 4 - Left: Initial geometry, Right: L-D Haack optimised 

geometry, Top: Optimised geometry total area distribution 

 

 
Figure 5 - Left: Initial geometry, Right: L-V Haack optimised 

geometry, Top: Optimised geometry total area distribution 

 

 
Figure 6 - Left: Initial geometry, Right: D-V Haack optimised 

geometry, Top: Optimised geometry total area distribution 

 

 

Figure 7 - CDw vs Mach for LD, LV & DV 

These three optimised bodies were analysed for a particular 
range of Mach numbers. Values of wave drag over this range 
are noted and compared. Hence for the sake of research, the 
series with the fairest results was selected for the optimisation 
and analysis of modern fighter aircraft.  

Table 2 - CDw at Mach 1.0 - 1.4 for LV, LD and DV 

    

 LV LD DV 

CDw M1.0 0.015 0.014 0.0096 

CDw M1.2 0.0184 0.0178 0.0107 

CDw M1.4 0.0176 0.0176 0.00995 

The difference in drag is due to the difference in shapes 
and bluntness of the three bodies. As shown in the results of 
the Haack bodies, it can be seen that the L-D and L-V Haack 
bodies detained the total length of the aircraft, whereas the D-
V Haack body has extended length since the parameters that 
are kept constant are diameter and volume. Since L-D and L-
V Haack bodies have lesser bluntness of the overall body that 
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is the reason why D-V produced minimum wave drag out of 
all three bodies. Since length extension is a phenomenon not 
acceptable for fighter aircraft hence using the D-V Haack 
series to optimise the shape is omitted. Out of the other two 
bodies, L-D has lesser drag comparatively because L-D has 
more bluntness towards the nose compared to L-V. Therefore, 
the series selected is L-D Haack to optimise the shape to 
minimise the wave drag for better supersonic performance. 

III. MATHEMATICAL MODELLING 

The wave drag is further split into wave drag due to lift 
and wave drag due to volume. There are two major 
approaches to calculate the wave drag of a configuration 

 Near-field theory 

 Far-field theory 
The near-field theory is based on calculating forces by 

integrating pressure drag acting normal to the surface and 
tangential stress acting over the surface. 

Mathematical modelling of the far-field theory is easy and 
provides a consistent approach to calculate wave drag of the 
configuration. In this theory, the drag of the configuration is 
determined from momentum change through the boundaries 
of the control volume. The control volume for this approach 
as shown in Figure 8 is typically cylindrical. Momentum 
change between the sides S1 and S3 of the control volume is 
due to the induced drag and the skin friction drag. 

 

Figure 8 - Representation of the control volume 

All sides of the control volume are several body lengths 
away from the configuration. In the subsonic regime, the flow 
becomes parallel to sides S2 of the control volume so there is 
no momentum change across the cylindrical sides S2 of the 
control volume. In the supersonic regime, momentum change 
occurs through the cylindrical sides S2 due to shock waves 
formation by configuration. 

Lomax [5] showed that the wave drag of a series of 
equivalent-volume bodies can be calculated by the 
momentum change through the cylindrical sides S2 of the 
control volume. Area distributions of the configuration at 
each streamwise station can be determined by the projections 
of oblique cutting planes to the normal planes. These oblique 
cutting planes are tangent to the Mach cone angle. Tangency 
angle theta is the rotation of the configuration in the Mach 
cone or rotation of the cutting plane for fixed configuration. If 

𝜃 = 90°, the cutting plane is tangent to the top of the Mach 
cone and momentum change occurs through the top of the 

control volume. The 𝜃 = 0°, cutting plane is tangent to the 
side of the Mach cone and momentum change occurs through 
the side of the control volume [6-14]. 

Drag equation due to total momentum change across the 
sides of control volume in (5) as: 

𝐷 =
1

2𝜋
∫ 𝐷(𝜃)

2𝜋

0

𝑑𝜃 
(4) 

∬ (𝑝 − 𝑝∞)𝜕𝑆3 − 𝜌∞𝑈∞
2

   

𝑆3=𝑆1

∬ 𝜑𝑥(1 +

    

𝑆3=𝑆1

𝜑𝑥)𝜕𝑆3

− 𝜌∞𝑈∞
2 ∬ 𝜑𝑥𝜑𝑟

    

𝑆2

𝜕𝑆2 + ∑ 𝐷𝑚𝑖𝑠𝑐 = 𝐷 

(5) 

Due to the S3 side of control volume placed far enough, the 
flow becomes 2-D and streamwise perturbation velocity is 
considered zero. 

𝜌∞𝑈∞
2 ∬ 𝜑𝑥(1 + 𝜑𝑥)

    

𝑆3=𝑆1

𝜕𝑆3 = 0 
(6) 

And the equation is reduced to  

∬ (𝑝 − 𝑝∞)𝜕𝑆3 −

   

𝑆3=𝑆1

𝜌∞𝑈∞
2 ∬ 𝜑𝑥𝜑𝑟

    

𝑆2

𝜕𝑆2 = 𝐷 

(7) 

 Wave drag can be calculated directly from velocity 
change in the side direction as 

−𝜌∞𝑈∞
2 ∬ 𝜑𝑥𝜑𝑟

    

𝑆2

𝜕𝑆2 = 𝐷(𝜃) 

(8) 

The conventional form of wave drag after a necessary 
integral operation 

𝐷(𝜃) = −
𝜌𝑉2

4𝜋
∫ ∫ 𝑆"(𝑥1)𝑆"(𝑥2)𝐿𝑂𝐺|𝑥1 − 𝑥2|𝜕𝑥1𝜕𝑥2

𝑙

0

𝑙

0

 
(9) 

Substituting (9) in (4) for angular rotation of cutting 
planes 

𝐷 = −
1

2𝜋

𝜌𝑉2

4𝜋
∫ ∫ ∫ 𝑆"(𝑥1)𝑆"(𝑥2)𝐿𝑂𝐺|𝑥1

𝑙

0

𝑙

0

2𝜋

0

− 𝑥2|𝜕𝑥1𝜕𝑥2 𝑑𝜃 (10) 

𝐷

𝑞
= −

1

4𝜋2
∫ ∫ ∫ 𝑆"(𝑥1)𝑆"(𝑥2)𝐿𝑂𝐺|𝑥1

𝑙

0

𝑙

0

2𝜋

0

− 𝑥2|𝜕𝑥1𝜕𝑥2 𝑑𝜃 (11) 

𝑆"(𝑥1) = 𝐴"(𝑥1,𝜃) −
𝛽

2𝑞
𝑙′(𝑥1, 𝜃) 

(12) 

𝑆"(𝑥2) = 𝐴"(𝑥2,𝜃) −
𝛽

2𝑞
𝑙′(𝑥2, 𝜃) 

(13) 

Term 𝐴"(𝑥1,𝜃) is the second derivative of equivalent body 

area distribution due to volume and the term 
𝛽

2𝑞
𝑙′(𝑥1, 𝜃) is 

equivalent body area due to lift. 

𝛽 = √𝑀2 − 1 (14) 

Wave drag due to lift approaches to zero as Mach number 
approaches to 1. 

𝐷

𝑞
=

−1

4𝜋2
∫ ∫ ∫ [𝐴"(𝑥1,𝜃) −

𝛽

2𝑞
𝑙′(𝑥1, 𝜃)] [𝐴"(𝑥2,𝜃)

𝐿

0

𝐿

0

2𝜋

0

−
𝛽

2𝑞
𝑙′(𝑥2, 𝜃)] 𝑙𝑜𝑔𝑒|𝑥1 − 𝑥2|𝑑𝑥1𝑑𝑥2𝑑𝜃 

(15) 

 Jones considered the cases when no lift is generated on 
aircraft configuration. Then Lomax equation 15 is reduced to   

𝐷

𝑞
=

−1

4𝜋2
∫ ∫ ∫ [𝐴"(𝑥1,𝜃)][𝐴"(𝑥2,𝜃)]

𝐿

0

𝐿

0

2𝜋

0

𝑙𝑜𝑔𝑒|𝑥1 − 𝑥2|𝑑𝑥1𝑑𝑥2𝑑𝜃 
(16) 

Equation 16 is also known as Von Kármán slender body 
formula which calculates wave drag based upon equivalent 
area distributions and given free stream conditions. 
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IV. RESULTS 

The selection of the Haack series for our study is 
determined based on these results. As one would assess, D-V 
Haack should be the preferable option bearing the least wave 
drag over the same range of Mach numbers. But in modern 
fighter aircraft, the length is an important design parameter, 
and extending the length of a fighter aircraft has its 
repercussions. Therefore, the option of selecting the D-V 
Haack is out of the discussion. Among both, L-D and L-V, 
the selection was clear. Hence, for our study, L-D Haack was 
selected for attaining the smooth cross-sectional area 
distribution curve. 

The baseline geometry of a modern fighter aircraft is 
illustrated above in Figure 9. The cross-sectional area plots of 
the entire geometry, including the fuselage, wing, empennage, 
and pods are shown in Figure 10. The initial cross-sectional 
area plot of the entire geometry is shown with every 
component marked. Fuselage does not have noticeable 
indentations as area ruling is expected to add to the geometry. 
Therefore, the total cross-sectional area distribution curve 
does not follow the smooth Sears Haack area curve which is 
designed for minimum possible wave drag. 

Applying area ruling on the baseline configuration in 
accordance to L-D Haack has resulted in a smoother overall 
total cross-sectional area distribution and the difference in 
wave drag before and after area ruling was applied is visibly 
clear.  The motive of carrying out the optimization of the 
fuselage shape as per the phenomenon of L-D Haack is 
fulfilled. The difference in shape, cross-sectional area 
distribution, and therefore the wave drag is shown.  

Fuselage cross-sectional area distribution is also shown in 
Figure 11. This distribution indicates the indentations that 
optimization created along the length. This is to accommodate 
other components and follow the smooth Sears Haack cross-
sectional area distribution.  Optimized fuselage area 
distribution is compensating by increasing first and then 
decreasing afterward, this is because of the reason that in 
fighter aircraft volume can be comprised but to a certain limit. 
To accommodate fuel, avionics systems, and weapons in 
internal bays for stealth, in the case of new generation fighter 
aircraft, the internal volume of the aircraft can neither exceed 
a certain nor be lesser than the minimum required value. 

Therefore, area ruling with volume conservation using the 
L-D Haack series is selected and the original configuration as 
shown in Figure 9 is optimized as shown in Figure 12. Figure 
13 shows the cross-sectional area distribution of the 
optimized geometry and it is evident that the optimized cross-
sectional distribution matches the sears Haack distribution 
and therefore the drop is wave drag as seen in Figure 14.  

A significant difference in wave drag of a configuration 
before and after optimisation can be seen in Table 3, where 
the wave drag at Mach 1.0, 1.2, and 1.4 are analysed. The 
percentage difference in the wave drag values at all different 
Mach numbers for all configurations are also summarised in 
Tab. 3. 

 

 

 

 

Figure 9 - Initial Geometry 

 

Figure 10 - Initial geometry component-wise cross-sectional 

area distribution 

 

 

Figure 11 - Fuselage area distribution 

 

Table 3 - CDw before and after optimisation at different Mach 

CD 
Initial 

Configuration 

Optimised 

Configuration 

Percentage 

Difference 

CDw M1.0 0.039 0.022 38 

CDw M1.2 0.024 0.014 39 

CDw M1.4 0.019 0.015 25 
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Figure 12 - Optimised Geometry 

 

Figure 13 - Optimised geometry component-wise cross-

sectional area distribution 

 

Figure 14 - CDw vs Mach 

Drag polar for both the shapes, with crude area distribution 
and with a smoother sears Haack type area distribution is 
shown in Figure 15.  

Therefore, a plot of aerodynamic efficiency and 
coefficient of lift is also shown in Figure 16, representing the 
improvement in the aerodynamics of the aircraft after area 
ruling. The improved value of L/D max will lead to better 
aerodynamic and mission performance. 

 

Figure 15 - Initial and optimised geometry drag polar 

.  

 

Figure 16 - Optimised geometry drag polar 

V. SENSITIVITY ANALYSIS 

Other than area ruling, wave drag is sensitive to 
parameters such as wing sweep, wing thickness, type of 
aerofoils, flight conditions, etc. For wave drag minimization, 
the sensitivity of such parameters is studied in the following 
sections. 

A. Sweep 

Sweeping the wings delays the supersonic flow. 
Therefore, as a part of the prospects and continuation of this 
study, sweep angles variation is analysed from the range of 0° 
to 60° with results summarised in Table 5 and plotted in 
Figure 17. The greater the sweep, the greater the critical 
Mach number, and the formation of shockwaves is stalled.  

Table 4 - Variation in CDw by changing wing sweep for a range of Mach 

Sweep         

Mach 0 10 20 30 40 47 50 60 

1 0.039 0.038 0.045 0.045 0.041 0.041 0.041 0.026 

1.1 0.031 0.034 0.034 0.034 0.035 0.033 0.035 0.027 

1.2 0.028 0.027 0.028 0.028 0.028 0.028 0.028 0.024 

1.4 0.022 0.022 0.022 0.022 0.021 0.022 0.021 0.020 

1.5 0.021 0.020 0.019 0.019 0.019 0.020 0.019 0.020 
1.8 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.019 

2.0 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.020 
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2.2 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

 
Figure 17 - CDw vs Mach for different wing sweep 

B. Thickness 

The thickness of the aerofoil used plays an important part 
in determining the aerodynamic characteristics of the aircraft. 
Increasing the thickness of the wing increases the drag of the 
aircraft due to increased flow separation. As the results have 
shown the statement is valid that the greater the thickness, the 
greater the drag. Figure 18 shows that if the aerofoil thickness 
is  

 

Figure 18 - CDw vs Mach for different thickness 

 

10% then the drag is the highest for the same range of Mach 
numbers. 

Table 5 Variation in CDw by changing wing thickness for a range of Mach 

             Thickness 

Mach 

 
3 4 5 6 7 8 9 10 

1 0.036 0.041 0.048 0.055 0.064 0.075 0.086 0.099 

1.1 0.030 0.033 0.037 0.042 0.048 0.055 0.062 0.071 

1.2 0.025 0.028 0.031 0.036 0.041 0.047 0.053 0.061 

1.4 0.020 0.022 0.024 0.027 0.031 0.035 0.040 0.045 

1.5 0.018 0.020 0.022 0.025 0.028 0.032 0.036 0.041 

1.8 0.017 0.018 0.019 0.021 0.024 0.026 0.029 0.033 

2.0 0.018 0.019 0.020 0.022 0.024 0.026 0.029 0.032 

C. Angle of Attack 

Flow separation is an important feature determined by the 
angle of attack of the aircraft. The results are shown in Figure 
19 show higher drag at high negative and positive values of 
angle of attacks. 

 
Figure 19 - CDw vs AoA 

VI. CONCLUSION 
Wave drag causes a significant rise in the total drag as the 

aircraft approaches supersonic speed. This is the reason why 
the transition from the subsonic to the supersonic regime is 
considered one of the most critical segments of the entire 
flight envelope. Various techniques are incorporated into the 
design phase of aircraft to reduce the wave drag and therefore 
enhance high-speed performance.  

% THICKNESS 
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Shape optimization is one of the core preliminary design 
phase procedures for reducing the drag penalty. The study 
explored all three Haack series for a wing-body combination 
to assess the methodology applicable for the modern 
multirole fighter shape optimization for the reduction of wave 
drag. Area ruling is carried out using all three series 
analytically and the trend of variation in wave drag for all the 
shapes assisted in the selection of one for the final aircraft 
body optimization. The analytical equations in the literature 
for these series are derived for nose cone designs or bullet 
bodies. For this study, the equations were translated over the 
entire fuselage and therefore wing-body combinations are 
derived for each series based on the required total volume of a 
fighter aircraft configuration as per the requirement.  

The wave drag for a wing-body configuration shaped 
analytically through the L-V Haack series at Mach 1.2 is 
0.0184 whereas, for L-D and D-V, the values are 0.0178 and 
0.0107 respectively. Although D-V Haack produced 
minimum drag nonetheless, increased length cannot be an 
exception in the case of fighter aircraft. Therefore, the L-D 
Haack series is selected for the fuselage shape optimization 
and incorporating area ruling into the final shape of the 
fighter for lesser wave drag.  

Wave drag before optimizing the shape of the fuselage 
was as high as over 0.039 that dropped down to 0.022 after 
optimization at Mach 1.0 as shown in Table 3 and the 
difference in overall cross-sectional area elucidates the fact 
that smoother the area distribution, more of a sears Haack 
shape, lesser the wave drag.  

Fuselage shape optimization is one of the techniques to 
counteract the performance deteriorating effects wave drag 
has on the aircraft in the supersonic regime. With the great 
advancements in aviation technology, flying at higher Mach 
numbers is a key design and performance feature for fighter 
aircraft. As mentioned earlier, super-cruise is one of the 
highlighting features of next-generation modern fighters, and 
design must be carried out in a way that substantially 
increases the super-cruise capabilities.   
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