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Abstract- Ultradensification using different types of small cells (SCs) is one of the key enabling solutions to meet the multiple 

stringent requirements of 5G cellular networks. However, radio resource management (RRM) in ultra-dense heterogeneous 

networks (HetNets) is not easy due to interferences in multi-tiered architecture and dynamic network conditions.  Interferences 

in 5G HetNets can be efficiently managed only through the techniques which are adaptive and self-organizing to handle dynamic 

conditions in 5G HetNets. In this article, a machine learning (ML) based self-adaptive resource allocation scheme is proposed 

based on the combination of independent and cooperative learning and evaluated for ultra-dense 5G HetNets. The proposed 

scheme aims to improve the QoS of all users associated with different network tiers in ultra-dense HetNets simultaneously. The 

proposed solution adaptively optimizes the SCs transmit power either through independent learning or cooperative learning 

based on the varying density of small cells to minimize the interferences and ensure minimum QoS requirements for all users 

in different network tiers. The proposed scheme not only maintains the minimum required capacities for QoS provision to all 

users simultaneously but has also shown a significant improvement in the capacities of users in different network tiers in high 

interference scenarios as compared to the use of a single learning scheme. 
 

Index Terms—5G, Heterogeneous Networks, Q-Learning, Small cells.  

 

 

I. INTRODUCTION 

Wireless communication evolved from 1G to 5G at an 

exponential rate in the last three decades. Each of the previous 

generations from 1G to 4G was a simple enhancement of the 

previous generations. However, simple enhancements in 4G 

cannot meet the future demands of users, data rate, and capacity. 

Therefore, the requirements of 5G are very stringent like nearly 

zero latency, very high data rate, and capacity to support 100 

billion devices [1]–[5]. To meet the requirements of 5G multiple 

enabling solutions have been proposed in the literature like 

massive multiple input and multiple outputs (MIMO), millimeter 

wave (mmW) communication, and ultradensification. Among the 

proposed enabling solutions for 5G cellular networks, 

ultradensification is the one which can provide the solution to 

multiple requirements simultaneously. However, co-tier and 

cross-tier interference resulting from the multi-tiered architecture 

of ultra-dense HetNets in the process of ultradensification is a 

performance-limiting factor. To efficiently utilize 

ultradensification, co-tier, and cross-tier interferences have to be 

mitigated simultaneously for QoS provision to all users in the 

different network tiers [1]–[6].   

Researchers have proposed many schemes for efficient 

ultradensification in 5G cellular networks by considering co-tier 

and cross-tier interferences. However, most of the schemes either 

could not handle both types of interferences simultaneously or 

could not provide minimum QoS to all users in the network as the 

density of SCs increased in ultra-dense HetNets. From the 

literature, it can be inferred that non-adaptive schemes for 

resource management in ultra-dense HetNets are not effective 

due to continuously changing conditions. Therefore, efficient 

ultradensification requires an intelligent or cognitive resource 

allocation scheme that is adaptive to the conditions. In this 

context, self-organizing networks (SON) [7] combined with ML 

[8]–[10] are explored in this work to devise an adaptive resource 

allocation scheme for ultra-dense HetNets to simultaneously 

mitigate co-tier and cross-tier interferences to provide QoS to all 

users in the network. 

 

II. RELATED WORK 

 

Recently ML has been integrated into various communication 
systems to solve the optimization problems which are 
difficult to solve with other conventional techniques.  

https://creativecommons.org/licenses/by-sa/4.0/
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Artificial intelligence (AI) and ML are being 
utilized as a source of cognition in communication systems. 
Reinforcement Learning (RL) which is a subdomain of ML, is 
recently applied for RRM in ultra-dense HetNets. RL is applied 
through Q-Learning (QL) which is model-free, robust, 
and resource-efficient therefore a suitable ML technique for 
real-time application [8]–[10].  

Multiple QL solutions have been proposed since last decade 
where each QL solution is different from the other based on the 
modeling of HetNets for implementation of QL and QL reward 
function (RF) designed to solve the distinct optimization 
problem. The QL for RRM in HetNets is either implemented 
through independent learning or cooperative learning [11]–
[15]. Although cooperative learning has been proven as a 
superior learning paradigm when the small cells are deployed 
in the form of clusters. The improved throughput of 
cooperative learning is at the cost of increased computational 
time. However varying cluster size and non-homogeneous 
distribution of small cells still require investigating an optimal 
learning paradigm especially when the distribution of small 
cells is not specified like the strip model in 3GPP TR 36.872 

[16].  

Therefore, this work aims to handle the limitations of recently 

proposed solutions to work in a certain defined environment and      
propose a hybrid learning solution for RRM using QL which can 
mitigate co-tier and cross-tier interferences simultaneously 
and provide minimum QoS to all macrocell user equipment 
(MUEs) and small cell user equipment (SUEs) in a system with 
any distribution of SC HetNets.  

III. SYSTEM MODEL 

Ultra-dense HetNets system model for 5G, shown in Fig. 1, is 

composed of one macrocell (MC) and multiple SCs deployed in 

co-channel mode. Based on the specifications of 3GPP TR 36.872 

[16], all SCs and related SUEs are deployed indoors. 

Ultradensification, or the deployment of a large number of small 

cells in a given area, leads to increased interference in wireless 

communication systems. This is because the small cells operate on 

the same frequency bands as macrocell, which results in 

interference between them.  Interference can lead to a degradation 

of the quality of service (QoS) for users in the affected area. To 

provide the required minimum SINR to the MUEs and SUEs, Γ𝑀 

and Γ𝐾 , respectively, we focus on interference mitigation through 

adaptive power allocation. The adaptive power allocation is 

considered in the downlink of the ultra-dense SC HetNets using the 

SON features defined in 3GPP TR 32.500 [17]. 

The SINR of the signal received by MUE, 𝑈𝐸𝑖
𝑚 where 𝑖 ∈ 𝑰 =

{1,2, … 𝐼}  in the downlink includes cross-tier interference from 

SCs and thermal noise. The SINR at the 𝑈𝐸𝑖
𝑚, 𝑆𝑚, is [19]-[21] 

𝑆𝑚 = 
𝑃𝑚|ℎ{𝑚,𝑚}|

2

∑ 𝑃𝑘  |ℎ{𝑘,𝑚}|
2
 𝑘∈𝐾 ⏟          

𝐶𝑟𝑜𝑠𝑠 𝑇𝑖𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

+𝑁𝑜  
(1)

 

where 𝑃𝑚 and  𝑃𝑘 are the transmitted power by MBS, and 𝑘𝑡ℎ 

SC respectively,  ℎ𝑚,𝑚 and ℎ𝑘,𝑚 are the channel gains from the 

MBS and 𝑘𝑡ℎ SC to the MUE respectively. 𝑁𝑜 represents the 

variance, 𝜎2, of the additive white Gaussian noise (AWGN). 

Like (1), the SINR at the 𝑐𝑡ℎ SUE, 𝑈𝐸𝑐,𝑘
𝑠  where 𝑐 ∈ 𝑪 =

{1,2, … . , 𝐶} and 𝑘 ∈ 𝑲 =  {1,2, … . , 𝐾}   are number of SCs and 

related SUEs respectively, 𝑆𝑘,  is [19]-[21] 

𝑆𝑘 = 
𝑃𝑘|ℎ{𝑘,𝑘}|

2

𝑃𝑚|ℎ{𝑚,𝑘}|
2

⏟      
𝐶𝑟𝑜𝑠𝑠 𝑇𝑖𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

+ ∑ 𝑃𝑗  |ℎ{𝑗,𝑘}|
2
 𝑗∈𝑆 𝑎𝑛𝑑 𝑗≠𝑘 ⏟              

𝐶𝑜−𝑇𝑖𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

+ 𝑁𝑜 
(2)

 

FIGURE 1. System model based on different types of small cells under laid the macrocell.  
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where ℎ𝑘,𝑘ℎ𝑗,𝑘,  and ℎ𝑚,𝑘 are the channel gains from the  𝑘𝑡ℎ SC, 

𝑗𝑡ℎ SC, and MBS to  the 𝑘𝑡ℎ  SUE respectively,  𝑃𝑗 the transmit 

power of the 𝑗𝑡ℎ SC,  and 𝑁𝑜 represents the variance, 𝜎2, of 

AWGN. Finally, the normalized capacity at the MUE and SC, 𝐶𝑚 

and 𝐶𝑘 , respectively are given below as in [19]-[21]: 

 

𝐶𝑚 = log2(1 + 𝑆𝑚  ) (3) 
𝐶𝑠 = log2(1 + 𝑆𝑘  ) (4) 

 

The minimum capacity for providing QoS to MUEs and SUEs, 

C𝑀 and C𝑆, respectively, can be calculated using the (3) and (4) by 

inserting the minimum required SINR of MUEs and SUEs for QoS, 

i.e.  Γ𝑀 and Γ𝐾. 

In the context of the above-presented system model, the adaptive 

power allocation problem is presented as follows. 

max 
𝑃
                    Cm, Cs, C𝑠𝑢𝑚

𝑠                               (5𝑎) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        𝑝1 ≤ 𝑝𝑐
𝑠 ≤ 𝑝𝑚𝑎𝑥 , 𝑐 ∈ 𝐂          (5𝑏) 

   Cm ≥ 𝐶𝑀          (5𝑐) 
                                                Cs ≥ 𝐶𝑆                                              (5𝑑) 

where 𝑝1  and 𝑝𝑚𝑎𝑥  are the minimum and maximum 
transmit powers that an SC can select. 

 

IV. PROPOSED METHODOLOGY 

In 5G wireless communication networks, resource management, 

and interference mitigation can be considered as the policy 

function in a Markov Decision Process (MDP). MDP can be 

effectively solved through QL.  The goal of RRM is to optimize 

the allocation of wireless resources, such as frequency bands and 

transmission power, to different users and devices in a network, 

in order to maximize network performance and user capacity. QL 

is used to learn a policy for resource allocation, where the policy 

is a mapping from the current network state to an action (i.e., a 

resource allocation decision). The goal is to learn a policy that 

maximizes an RF, which could be a measure of network 

throughput, energy efficiency, or user satisfaction. To apply QL 

for RRM in 5G HetNets, the following components of QL are 

defined by considering the system model in section II and the 

optimization problem in (5): 

A. AGENTS 

QL agents are agents that use the QL algorithm to learn the 

optimal policy for maximizing cumulative rewards. QL agents 

work by estimating the value of each possible action in a given 

state. In case of 5G HeNets, small cells act as the agent of QL. 

B. STATES 

The states of the network can include information such as the 

number of devices, their communication requirements, their 

locations, and the available wireless resources. In our case, the 
state of the agent, i.e. SC, is defined on the basis of the location 
of the SC with respect to the nearby MUE and MBS. The 
distances from the MBS and MUE are defined as follows on 
the basis of the distance rings 𝑵𝑴𝑩𝑺  and 𝑵𝑴𝑼𝑬   respectively. 

𝑫𝑴𝑩𝑺 = {𝟎, 𝟏, 𝟐, . . . . . , 𝑵𝑴𝑩𝑺} (𝟔) 
𝑫𝑴𝑼𝑬  = {𝟎, 𝟏, 𝟐, . . . . . , 𝑵𝑴𝑼𝑬} (𝟕) 

FIGURE 2. Flow chart of hybrid learning algorithm for optimal radio 

resource allocation in HetNets. 

These parameters define the state of 𝒊𝒕𝒉 SC at the time 𝒕 as 
𝒔𝒊
𝒕 = (𝑫𝑴𝑩𝑺, 𝑫𝑴𝑼𝑬)  (𝟖) 

C. ACTIONS 

The action space includes all possible resource allocation 

decisions that can be made in the current state, such as allocating a 

frequency band or adjusting transmission power. In case of 

HetNets, the transmit power for each SC is considered as the action 

which an agent can take. The transmit power of the SCs  can be 

selected from an equally spaced set of transmit power levels. 
𝑨 = {𝒂𝟏,𝒂𝟐,𝒂𝟑, . . . . ,𝒂𝑵𝒑𝒐𝒘𝒆𝒓} (𝟗) 

between the 𝑷𝒎𝒊𝒏 and 𝑷𝒎𝒂𝒙 . 
D. REWARD FUNCTION 

The reward signal is a measure of network performance or user 

satisfaction and is typically a function of the chosen action and 

the resulting network state. 

E. Q-TABLE 

In RL, an agent interacts with an environment by taking actions 

and receiving rewards based on those actions. The goal of the 

agent is to learn a policy that maximizes the cumulative reward 

over time. The Q-Table is a table that maps a state-action pair to 

the expected cumulative reward for taking that action in that state. 

The Q-Table is updated as the agent gathers more experience and 

learns the expected rewards for different actions in different 

states. 
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During the learning process, the agent explores the 

environment by taking actions and updating the Q-Table based 

on the rewards it receives. The agent then uses the Q-Table to 

select the best action to take in a given state based on the expected 

cumulative reward for each possible action. 

F. PROPOSED HYBRID LEARNING BASED QL 

ALGORITHM 

Here, first, we model the SC HetNets network as the multiagent 
MDP and then proposed a QL-based algorithm to solve 
the OP presented in (5a-5d). The QL algorithm used in this 
research is presented in Fig. 2. 

The proposed QL algorithm uses both, independent and 
cooperative learning paradigms simultaneously. At the start of 
the algorithm, each SC detects its neighbors through Automatic 
Neighbor Discovery (AND) operation, which is defined by 
3GPP. If an SC does not find any other SCs in its neighborhood, 
it works in an independent learning paradigm and learns to 
optimize its RF. In this case, SC does not share learned 
information with any other SC. On the other hand, if an SC finds 
other SCs in its neighborhood, then it starts learning in the 
cooperative paradigm where it continuously shares and 
accepts information from the neighboring cells. Hybrid 
learning which is a combination of both independent and 
cooperative learning in different scenarios may significantly 
improve the throughput of the network and also reduce the 
computational time in the case of using cooperative learning 
only.  
 

V. RESULTS AND DISCUSSION 

The proposed hybrid learning-based RRM algorithm for 

effective interference mitigation and QoS provision to all MUEs 

and SUEs is evaluated in an ultra-dense scenario, presented in Fig. 

3, which is in line with the system model presented in Fig. 1. The 

simulation scenario is evaluated through the Monte-Carlo 

simulations where the location of MUEs, SCs and their related 

SUEs changes in each iteration. The simulation setup is composed 

of 16 𝑈𝐸𝑖
𝑚 and 20 𝐵𝑆𝑠 where each 𝐵𝑆𝑠 supports 02 𝑈𝐸𝑐,𝑘

𝑠 . The 

simulation parameters and channel model are according to the  

 
TABLE I 

SIMULATION PARAMETERS 

Parameter Quantity 

Number of Macrocell Base station  1 

Number of Small Cells  20 

Number of Macrocell Users  16 

Number of Small Cell Users  2 (Each Small Cell) 

Coverage Radius of Macrocell  350m 

Coverage Radius of Small Cell  10m 

Transmit Power of Macrocell  50dBm 

Transmit Power of Small Cell  -15dBm  to 15dBm 

Number of Power Steps, 𝑁𝑝 31 

ΓM 1 b/s/Hz 

ΓK 1b/s/Hz  

Q-Learning Rate  0.5 

Discount Factor  0.9 

Number of Q-Learning Iterations  75000 

Operating Frequency  2.0 GHz  

Path Loss Model 3GPP TR36.872 [18] 

  

 
FIGURE 3. Simulation scenario based on multiple MUEs, SCs and 

SUES. 

 
FIGURE 4. Minimum MUE Capacity for 16 MUEs and 20 SCs in the 

system where each SC has 02 SUES. 

3GPP TR36.872 [16] whereas the QL parameters are in line with 

the other solutions recently proposed in the literature [12], [14], 

[19]-[24]. Simulation parameters are summarized in Table 1. 

The simulation results of various key performance indicators 

(KPIs) are obtained by adding SCs in the simulation model one by 

one at the random location in the coverage area of MC whereas the 

number of 𝑈𝐸𝑖
𝑚 remain constant. The locations of 𝑈𝐸𝑖

𝑚and 𝑈𝐸𝑐,𝑘
𝑠  

in the MC coverage area is kept random in each Monte-Carlo 

iteration. The results obtained through simulation of the proposed 

solution are analyzed in two ways, firstly, if the proposed solution 

can meet the minimum QoS requirements for all users in the 

network, and secondly, the results are compared with other state of 

the art solutions recently proposed in the literature.  
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FIGURE 5. Minim SUE Capacity for 16 MUEs and 20 SCs in the system 

where each SC have 02 SUES. 

FIGURE 6.  SUM SUE Capacity for 16 MUEs and 20 SCs in the system 

where each SC have 02 SUES. 

 
A. MINIMUM MUE CAPACITY 

The capacity of 𝑈𝐸𝑖
𝑚, 𝐶𝑚, is an important KPI in terms of QoS 

provision in co-channel deployment mode as the 𝑈𝐸𝑖
𝑚 is a primary 

user in the network. The cross tier interference from close-by SCs 

severely degrades the QoS of 𝑈𝐸𝑖
𝑚. However, the proposed 

solution successfully handled the cross tier interference and 

provided minimum 𝐶𝑚 significantly higher than the minimum 

QoS threshold. The simulation results of  𝐶𝑚are presented in Fig. 

4. It pertains to mention that the minimum 𝐶𝑚 is least 𝐶𝑚 which 

any of the 16 𝑈𝐸𝑖
𝑚 in the system obtained. The proposed solution 

not only provided 𝐶𝑚 significantly higher than the minimum QoS 

threshold but also outperformed the state of the art solutions IQL 

[19] and CQL [20].  

 

 

B. MINIMUM SUE CAPACITY 

To provide QoS to 𝑈𝐸𝑐,𝑘
𝑠   the capacity of 𝑈𝐸𝑐,𝑘

𝑠 , 𝐶𝑠, should always 

be greater than the minimum QoS threshold. However, in case of 

SCs in ultra-dense HetNets, it is a difficult task due to dynamic 

network conditions and network density. The performance of the 

SCs are effected by the co-tier and cross tier interference from near 

by SCs and MUE respectively. The proposed solution not only 

successfully provided the minimum required 𝐶𝑠 to all 20 𝑈𝐸𝑐,𝑘
𝑠  

simultaneously but also outperformed other recently proposed 

solutions, IQL [19] and CQL [20]. The simulation results for  𝐶𝑠 
are presented in the Fig. 5.  

 

C. SUM CAPACITY OF SUEs 

The sum capacity of SUEs, 𝐶𝑠𝑢𝑚
𝑠  is an increasing function of SCs 

compared to the 𝐶𝑚 and 𝐶𝑠. The 𝐶𝑠𝑢𝑚
𝑠   represents how the 

proposed solution improves the throughput of all SCs together. The 

simulation results for 𝐶𝑠𝑢𝑚
𝑠  are in line with the 𝐶𝑠. The proposed 

solution significantly improved the 𝐶𝑠𝑢𝑚
𝑠  as compared to the other 

recently proposed solutions in the literature. The comparison of 

𝐶𝑠𝑢𝑚
𝑠 using the proposed solution and other state of the art solutions 

is presented in Fig. 6.  

 

VI. CONCLUSION 

The hybrid QL based on the combination of IL and CL in different 

SC density scenarios outperformed both IL and CL  when applied 

as a single learning scheme. The simulation results show that all 

three KPIs, minimum MUE capacity, minimum SUE capacity, and 

sum capacity of SUEs are significantly improved in the ultra-dense 

HetNets as compared to the IL and CL proposed recently in the 

literature. The proposed solution opts for the use of independent or 

cooperative learning based on the density of small cells. The results 

of the proposed hybrid learning further signify the real-time 

implementation of Q-learning for RRM in HetNets. In the future, 

the proposed hybrid QL algorithm will be evaluated in a more 

realistic ultra-dense scenario by considering user load balancing 

among the different network tiers. 
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